F eb 2 00 6 Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4

نویسنده

  • Georgi Vodev
چکیده

We prove dispersive estimates for solutions to the wave equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+1)/2−ǫ), ǫ > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive estimates of solutions to the Schrödinger equation in dimensions n≥4

We prove dispersive estimates for solutions to the Schrödinger equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+2)/2−ǫ), ǫ > 0.

متن کامل

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions

In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...

متن کامل

Low-frequency dispersive estimates for the wave equation in higher dimensions

We prove dispersive estimates at low frequency in dimensions n ≥ 4 for the wave equation for a very large class of real-valued potentials, provided the zero is neither an eigenvalue nor a resonance. This class includes potentials V ∈ L∞(R) satisfying V (x) = O ( 〈x〉−(n+1)/2−ǫ ) , ǫ > 0.

متن کامل

2 00 1 Time decay for solutions of Schrödinger equations with rough and time - dependent potentials

In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimension 1 i ∂ t ψ − △ψ + V ψ = 0, ψ(s) = f (0.1) where V (t, x) is a time-dependent potential that satisfies the conditions sup t V (t, ·)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006